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ABSTRACT: Soil hydrophysical properties are necessary components in weather and climate simulation, yet the parame-
ter inaccuracies may introduce considerable uncertainty in the representation of surface water and energy fluxes. This
study uses seasonal coupled simulations to examine the uncertainties in the North American atmospheric water cycle that
result from the use of different soil datasets. Two soil datasets are considered: the State Soil Geographic dataset
(STATSGO) from the U.S. Department of Agriculture and the Global Soil Dataset for Earth System Modeling (GSDE)
from Beijing Normal University. Two simulations are conducted from 1 June to 31 August 2016–18 using the Weather
Research and Forecasting (WRF) Model coupled with the Community Land Model (CLM) version 4 and applying each
soil dataset. It is found that changes in soil texture lead to statistically significant differences in daily mean surface water
and energy fluxes. The boundary layer thermodynamic structure responds to these changes in surface fluxes resulting in dif-
ferences in mean CAPE and CIN, leading to conditions that are less conducive for precipitation. The soil-texture-related
surface fluxes instigate dynamic responses as well. Low-level wind fields are altered, resulting in differences in the associated
vertically integrated moisture fluxes and in vertically integrated moisture flux convergence in the same regions. Through land–
atmosphere interactions, it is shown that soil parameters can affect each component of the atmospheric water budget.
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1. Introduction

Soil science plays an increasingly prominent role in hydro-
logy and Earth system science, partially motivating the
creation of the International Soil Modeling Consortium
(Vereecken et al. 2016), which, among other activities, pro-
motes the study of soil processes within Earth system model-
ing frameworks. However, many challenges still exist: the
implementation of soil processes in land surface models
(LSMs) has been shown to introduce further GCM depen-
dence on resolution (Bosilovich and Sun 1998), while high
variability is shown between the use of different combinations
of soil textures, soil parameters, and hydraulic parameteriza-
tions (Verhoef and Egea 2014). Other results suggest that soil
hydrophysical properties (Kishné et al. 2017) are regionally
specific. The solutions to these challenges necessitate simulta-
neous observations of soil moisture, surface fluxes, and multiple
horizons of soil properties (Mu et al. 2021)}an observational
dataset that is likely difficult to achieve on a global scale.

Despite these obstacles, the evolving soil sciences community
has made remarkable strides in developing high-resolution
global soil datasets (Hengl et al. 2017; Lannoy et al. 2014;
Shangguan et al. 2014). Estimates of soil hydrophysical
properties have been compiled from novel regional mea-
surement techniques (Lu et al. 2020), physics-based rela-
tionships (Lehmann et al. 2018; Or and Lehmann 2019;
Zhang et al. 2018), and statistical mechanisms such as

random forests (Szabó et al. 2019) and other pedotransfer
functions (PTFs; van Looy et al. 2017). These are used to
derive high-resolution soil hydrophysical property maps
(Dai et al. 2019a; Chaney et al. 2019), which can be used to
enhance coupled and uncoupled land surface model (LSM)
simulations. See Dai et al. (2019b) for a review of global
soil datasets used in Earth system models.

Despite the availability of global high-resolution soil hydro-
physical property datasets, many LSMs remain dependent on
look-up tables to associate soil textural categories with empir-
ically derived hydrophysical properties. Look-up tables, while
computationally efficient, require soil hydrophysical proper-
ties to remain discrete and linked to broad estimates of soil
texture rather than continuous evolving quantities. Further-
more, the usage of a lookup table assumes (i) that soil proper-
ties are globally transferable, which often is not the case, and
(ii) that it is dependent on soil texture maps. Thus, at typical
coupled modeling resolutions, the prescriptive soil texture
categories can vary significantly between prominent datasets.

Furthermore, in the context of coupled modeling, soil
hydrophysical properties and the choice of PTFs have been
shown to impact soil moisture that in turn affects surface
water and energy fluxes (Ek and Cuenca 1994; Weihermüller
et al. 2021), surface heat fluxes (Peters-Lidard et al. 1998),
and PBL evolution (Breuer et al. 2012; Dennis and Berbery
2021, hereafter DB21; Kim and Entekhabi 1998; Pan and
Mahrt 1987; Ek and Cuenca 1994). Further, land–atmosphere
interactions (Seneviratne et al. 2010; Koster et al. 2004;
Dirmeyer 2011; Santanello et al. 2018) are dependent on sur-
face water and energy fluxes; therefore, if soil hydrophysical
properties influence surface fluxes, they can also influence
land–atmosphere interactions. The so-called “terrestrial leg”
of land–atmosphere coupling links soil moisture via surface
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processes (Dirmeyer 2011) to surface latent and sensible heat
fluxes, while the atmospheric leg expands that relationship to
describe the effect of surface fluxes on PBL evolution, clouds,
and precipitation (Dirmeyer et al. 2014). The specific role of
surface properties in land–atmosphere coupling (including the
role of soil texture and soil hydrophysical properties) has
received less attention than, for instance, the relationship
between soil moisture and precipitation (Hohenegger et al.
2009; Findell and Eltahir 1997; Eltahir 1998).

At and beneath the surface, soil hydrophysical properties
play a vital role in the terrestrial water budget, affecting
evapotranspiration, groundwater recharge, and runoff. Clayey
soils require more time to percolate water to lower levels,
which can lead to increases in runoff, pooling, and evapo-
transpiration of standing water (Duffkova 2013). Sandy soils,
on the other hand, quickly absorb and transmit moisture
after rainfall (Duffkova 2013). Subsurface runoff generally
increases for nonvegetated surfaces versus vegetated surfaces
(Liao et al. 2016), and for compacted soil surfaces versus aer-
ated and natural surfaces (Prats et al. 2021). Groundwater
recharge (GR) is also dependent on soil texture, with GR in
finer soils being more sensitive to climatic conditions than GR
in coarse soils (Wang et al. 2015). These mechanisms work to
distribute soil moisture, which is critical to linking the land
surface with the atmosphere.

After soil moisture is distributed, land–atmosphere interac-
tions have been shown to create environments more (or less)
conducive for convection to occur. Soil moisture conditions
have been shown to affect thermodynamic instability (Holt
et al. 2006; Yin et al. 2015) and develop cross-boundary meso-
scale circulations providing vertical motion and preferred ini-
tiation locations (Avissar and Liu 1996; Zheng et al. 2021; Lee
et al. 2019). Similarly, the land properties can enhance or
diminish the horizontal transport of moisture (Lee and
Berbery 2012a; Lee et al. 2013; Yang and Dominguez 2019),
affecting vertically integrated moisture flux convergence}
a critical component in the atmospheric water budget
(Rasmusson 1968; Roads et al. 1994; Trenberth et al. 2007).
While these impacts have been studied from a general land
surface perspective, the specific role of soil texture in these
relationships has not been examined as much.

This study aims to connect the atmospheric portion of
land–atmosphere coupling to the impact of soil texture-
modulated surface fluxes. It is hypothesized that the soil’s
hydrophysical properties, via their influence on surface fluxes,
will affect the thermodynamic instability [i.e., convective avail-
able potential energy (CAPE) or convective inhibition (CIN)],
as well as moisture transports (i.e., atmospheric circulation),
ultimately influencing the atmospheric water budget. This
study represents a follow-on to an earlier study: DB21. DB21
examined the soil properties’ role in determining surface water
and energy fluxes and near-surface states. This study advances
their analysis to focus on the PBL evolution, thermodynamic
environments for precipitation (i.e., atmospheric stability),
dynamic precursors to precipitation (i.e., moisture transports),
and the atmospheric water budget. To this end, we compare
the two sets of summer WRF simulations described in DB21
using different soil texture datasets: one using the State Soil

Geographic Dataset (STATSGO; NRCS 2012) soil texture
dataset and the other using the Global Soil Dataset for Earth
System Modeling (GSDE; Shangguan et al. 2014). The experi-
mental design is outlined in section 2, followed by descriptions
of the soil texture datasets. Section 3 will validate the model
simulations using in situ measurements and reanalysis and dis-
cuss the model internal variability. Section 4 will highlight the
soil-parameter-induced differences in the thermodynamic and
dynamic environment and relate those differences to the
atmospheric water cycle. Finally, section 5 provides our con-
cluding remarks.

2. Experimental setup

a. Model design

The model configuration and simulations are the same ones
used by DB21. We used WRF’s Advanced Research version
(WRF-ARW v3.9; Skamarock et al. 2008) to carry out simula-
tions over three summers (JJA 2016–18) to examine near-
surface processes related to soil physics. In this study, we
investigate how atmospheric processes can be related to soil
physics. The model domain covers the continental United
States (CONUS), Mexico, northern Central America, and
southern Canada (see Fig. 1) at a 15-km horizontal resolution.
There are 51 vertical layers, with 13 in the lowest 1 km to
improve boundary layer representation. The model parame-
terizations include a single-moment microphysics scheme
(Thompson et al. 2008), the Rapid Radiation Transfer Model
(Iacono et al. 2008), and the Betts–Miller–Janjić convective
parameterization scheme (Janjić et al. 2001). The PBL is rep-
resented using Mellor–Yamada–Nakanishi–Niino (MYNN) 2,
a second-order closure, a local PBL scheme (Nakanishi and
Niino 2006), and the compatible MYNN surface layer scheme
to account for the interface between the land surface and the
PBL. The combination of parameterizations was chosen
based on previous literature (e.g., Lee and Berbery 2012b;
Lee et al. 2013; Müller et al. 2014) combined with the authors’
previous experiences.

As discussed in DB21, WRF is coupled with the land
surface model, Community Land Model version 4 (CLMv4,
hereafter CLM). CLM interacts with the atmospheric model
to establish the lower boundary conditions related to the
surface water and energy budgets. It represents the soil–
atmosphere–vegetation nexus using a resistance formulation
and accounts for soil hydraulics using a classical understand-
ing of fluid movement within porous media (e.g., Richards
1931). CLM has 10 vertical soil layers increasing in thickness
with depth and extending down to 3.42 m. A full technical
description of CLM can be found in Oleson et al. (2010).
CLM’s positive performance has been reported thoroughly in
the literature, for example, against the NLDAS testbed
experiments (e.g., Xia et al. 2012; Cai et al. 2014; Xia et al.
2017, etc.) and in both offline and coupled mode (to CAM3.0)
for climate-scale processes (e.g., Lawrence et al. 2007, 2011).

Representing soil physics requires knowing their hydraulic}
or hydrophysical}properties. In models, they are usually
derived as parameters specific to a soil texture classification.
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Then, a lookup table with parameters that correspond to each
soil texture category is used. The lookup table parameters are
based on empirical relationships obtained in laboratory experi-
ments (e.g., Cosby et al. 1984). This method assumes that cate-
gories are universal (i.e., sand in one area is the same as sand
everywhere) and that they can be transferrable to the real
world}a topic that is important for soil science research. The
lookup table approach has the advantage that only the soil tex-
ture maps and the lookup table are needed to define all the soil’s
hydrophysical properties; therefore, it is computationally inex-
pensive. However, the soil system and the land–atmosphere
coupling do become dependent on the external soil texture
databases.

Our goal is to determine the impact of these soil databases
via their soil hydrophysical properties on land–atmosphere
interactions and the atmospheric water budget. It is well
understood that vegetation has a significant effect on surface
fluxes, as well. Therefore, the simulations have been given the
same vegetation assignments to avoid vegetation dependencies

when assessing the impact of soil hydrophysical properties. This
approach allows us to isolate the effect of the soils more easily
despite the presence and role of vegetation.

b. Soil databases

During the preprocessing stage for WRF the model’s grid is
defined. Its static fields are assigned to each grid space (i.e.,
soil type, vegetation type, topographical features) based on
the provided databases. For a complete description of this
process, please refer to DB21 and the supporting literature.
The default soil texture classifications in WRF are provided
using the USDA STATSGO soil dataset (NRCS 2012). For
regions outside of the United States, the Food and Agricul-
ture Organization (FAO) Soil Map of the World (FAO/
UNSECO 1971), which is about 5-km grid spacing, is
employed. Within the United States, STATSGO is used.
STATSGO was based initially on the FAO Soil Map of the
World. Since then, it has expanded to include multiple addi-
tional high-resolution surveying campaigns supplemented

FIG. 1. Soil category assignments are shown for (a) STATSGO, (b) GSDE, and (c) for the 10 most common soil category transitions.
The soil categories [(a) and (b); adapted from DB21, their Figs. 1a and 1b, respectively] are defined by the key in (a). The transitions in
(c) are organized by change in grain size with larger-to-smaller (i.e., decreasing grain size) transitions in cool colors, and smaller-to-larger
transitions (i.e., increasing grain size) in warm colors. The assigned wilting point is shown for (d) STATSGO and (e) GSDE, as well as
(f) the differences (GSDE 2 STATSGO). The field capacity for (g) STATSGO and (h) GSDE is shown, as well as (i) the differences
[GSDE2 STATSGO) in field capacity.
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with Landsat data over CONUS and U.S. territories, where
its current resolution is about 1 km.

As in DB21, the second soil texture database in this study,
GSDE, was also based initially on the FAO Soil Map of the
World. GSDE represents a modern alternative to STATSGO
for simulation studies inside the United States, as each repre-
sent plausible estimations of soil properties and soil texture in
this region. It uses numerous global surveying campaigns
complemented with advanced statistical regridding proce-
dures and machine learning to infer the soil parameters in
undersurveyed regions (Shangguan et al. 2014; Dai et al.
2019a). It is provided at 1 km globally and offers eight vertical
levels of soil characteristics. GSDE provides 1-km resolution
globally as opposed to STATSGO’s 1-km resolution only
over CONUS and U.S. territories. DB21 showed that the dif-
ferences in soil classification between these two datasets are
not randomly distributed, but, instead, they exist in coherent
areas of reduced/increased soil grain size, which allows their
impacts to be projected onto regional scales (see Fig. 1c).

Figures 1a and 1b present the model soil classifications as
portrayed by the STATSGO database and the GSDE data-
base. As shown in DB21, the primary soil classification in the
midwestern United States (Midwest) is silt loam (green) in
the STATSGO map. In contrast, in the GSDE map, many
categories can be identified: silty clay loam (orange), sandy
loam (light purple), and loam (red). Each of these differences,
or “transitions,” represents a change in soil hydrophysical
properties (i.e., a difference in how the soil interacts with water).
Many differences can be identified between Figs. 1a and 1b, but
the 10 most common transitions are highlighted in Fig. 1c.
Notice a continuous area of transitions in Fig. 1c that extends
from the Texas–Arkansas border northeastward into Pennsylva-
nia, the area here referred to as the Midwest. Most of these tran-
sitions represent a decrease in average soil grain size.

Figure 1 also shows the distribution of selected soil hydro-
physical parameters as they have been assigned from the
lookup table. Figures 1d and 1e show the wilting point (i.e.,
the lower limit for soil water storage under normal conditions).
GSDE has the higher wilting point values (Fig. 1e, lighter yellow
colors) throughout Missouri, Illinois, Indiana, Kentucky, and
Ohio, as compared to the lower values in the same area in the
STATSGO dataset (Fig. 1d, mostly orange colors). Simi-
larly, the third row in the figure shows the field capacity
(i.e., the maximum amount of moisture a soil can hold after
free drainage occurs). Notice the higher field capacity val-
ues in GSDE (Fig. 1h, mostly blue colors) throughout the
same region as the wilting point example compared to the
lower values in the STATSGO dataset (Fig. 1g, light
green colors).

The smaller size grains in GSDE imply that both field
capacity and wilting point increase. Therefore, most of the
map (Figs. 1f,i) shows that the differences in GSDE minus
STATSGO hydrophysical properties have positive differ-
ences. As with wilting point and field capacity, other hydro-
physical properties are connected to each soil textural
classification. Thus, when one changes the locations of the soil
texture categories one is changing the spatial distribution of
soil hydrophysical properties, which affects the way the soil

interacts with the surface and subsurface moisture. In the next
section, we assess the impact of using these two soil datasets
in separate regional climate simulations to support this assertion.

3. Model performance

Performance of the model is examined at two-time scales:
the diurnal cycle and the seasonal means. The first step is to
contrast the diurnal cycle of the model’s surface fluxes against
selected AmeriFlux flux towers. Then, the evaluation of the
mean fields is done by contrasting mean fields with observa-
tionally based forcings employed in land data assimilation sys-
tems. In our study, the substance lies in the differences
produced by changes in soil categories between the models
themselves. Thus, it is not an attempt to determine which
model configuration performs better. Instead, comparing
point measurements to model simulations is helpful to assess
if the model simulations are sufficiently realistic.

a. AmeriFlux towers

To confirm that the model physics can reproduce plausible
physical patterns, we compare the regional climate model sim-
ulations against observations. To this end, the diurnal cycle of
surface latent and sensible heat fluxes in the WRF experi-
ments are contrasted against data from three AmeriFlux tow-
ers (Fig. 2). An inverse distance-weighted average was used
to interpolate the model data to each flux tower’s location.
The sites were chosen based on availability and continuity of
data. They are the U.S.-ARM Central Facility in Oklahoma
(Biraud et al. 2020), the U.S.-MMS in central Indiana (Novick
and Phillips 2020), and the U.S.-IB1 in the rural suburbs of
Chicago, Illinois (Matamala 2019). Table 1 presents the char-
acteristics of each tower location. This comparison illustrates
the model’s ability to reproduce the diurnal cycle of surface
fluxes without declaring which configuration is superior.
Instead, it is meant to illustrate that the model is of sufficient
quality to address the role of soil texture assignment in alter-
ing the surface fluxes. The role of other surface energy bal-
ance terms was also considered, but the components of
radiation showed only small differences in the mean diurnal
cycle (not shown) leading to a balance primarily between
latent and sensible heat fluxes.

The U.S.-ARM site has a soil texture identified as silt loam,
with a land cover of cropland that cycles between winter
wheat, alfalfa, and soybeans (see Table 1). The model’s land
use assignment for all experiments identifies the site as grass-
land. The WRF-STATSGO simulation, hereafter WRFS, has
the appropriate soil texture for that location (silt loam). In
contrast, the WRF-GSDE simulation, hereafter WRFG, speci-
fies clay loam}a relative reduction in soil grain size. Accord-
ing to DB21, smaller soil grains can reduce latent heat flux
and increase sensible heat flux relative to the simulation
employing STATSGO. Figure 2a shows the U.S.-ARM flux
tower’s JJA 2016–18 mean diurnal cycle of latent and sensible
heat fluxes and compares them to WRFS and WRFG simula-
tions. In terms of latent heat flux (solid lines), both model
and observed diurnal cycles experience consistent timing in
the maximum and minimum values, with latent heat flux
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increasing throughout the morning hours from about 0700
local time (LT) until about 1200 LT and decreasing as the sun
sets around 1800 LT. The WRFS simulation with silt loam soil
type experiences the greatest average latent heat flux at the
diurnal maximum (about 1300 W m22 at 1200 LT). In this
location, the WRFG simulation has a smaller soil grain assign-
ment, and it shows reduced average latent heat flux through-
out the diurnal cycle compared to WRFS. In terms of sensible
heat flux, the WRFG simulation has an increased diurnal

maximum compared to the WRFS (115 W m22) and the in situ
measurements (150 W m22). While differences are apparent
between the model simulations and the observed diurnal fluxes,
the model simulations fall within 61 standard deviation of the
observed mean (vertical lines in Figs. 2a–c) indicating a similar
behavior between the simulations and observations.

Figure 2b presents the U.S.-MMS AmeriFlux site (39.3238N,
86.4138W). This site’s information does not include soil type,
but it is in a deciduous broadleaf forest, (see Table 1). The

FIG. 2. The diurnal cycle of latent (W m22) and sensible heat flux (W m22) the model simulations are compared to
AmeriFlux tower in situ flux measurements. The location of each tower is given as lat/lon coordinates, and it is shown
in the inset map. Solid lines represent latent heat flux, while dotted lines show sensible heat flux. The AmeriFlux tow-
ers (black) are compared to WRFS (blue) and WRFG (red) at each flux tower location. Vertical black lines represent
one standard deviation from the observed latent heat flux curve.

TABLE 1. Describes the characteristics of each AmeriFlux tower site according to the site metadata compared to the characteristics
of the associated grid spaces in both model environments.

Location (lat, lon) Source Soil type Vegetation type

U.S.-ARM (36.6058N, 97.4858W) Flux tower Silt loam (nearby) CROP; winter wheat, soy, alfalfa
STATSGO Silt loam Grasslands
GSDE Clay loam Grasslands

U.S.-MMS (39.3238N, 86.4138W) Flux tower Unspecified Deciduous broadleaf forest; .60% coverage
STATSGO Silt loam Deciduous broadleaf forest
GSDE Loam Deciduous broadleaf forest

U.S.-IB1 (41.8598N, 88.2228W) Flux tower Silty clay loam CROP; corn, soybean
STATSGO Silt loam Urban, cropland
GSDE Silty clay loam Urban, cropland
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diurnal cycles of latent heat flux in both model simulations
are very similar to the observations at this site, rising to about
275 W m22 at the peak and falling off to near 0 W m22 during
the nighttime hours, and during that time fall within one stan-
dard deviation of the observed mean. Sensible heat flux, how-
ever, shows more of a difference between the two model
simulations and the in situ measurements. The nonlinear char-
acteristics of canopy shading and subcanopy turbulence are
difficult to account for in models (Fisher and Koven 2020;
Bonan et al. 2018). Forest dynamics could then contribute to
the differences in sensible heat flux between the simulations
and in situ measurements.

The third site, U.S.-IB1 (Fig. 2c), has silty clay loam as the
observed soil type and cropland as the observed vegetation
coverage (corn and wheat; see Table 1). In this instance,
GSDE has the appropriate soil type assignment (silty clay
loam), while STATSGO’s is somewhat different (silt loam).
Curiously, WRFG has a lower performance than WRFS in
terms of latent and sensible heat flux biases. Both simulations
have similar timing of the diurnal cycle, but both overestimate
the magnitude of sensible heat flux and underestimate the
magnitude of latent heat flux at the diurnal peak. Despite
underestimating the latent heat flux, the simulated diurnal cycles
fall within one standard deviation of the mean. Figure 2c
shows that with finer soil grains in GSDE compared to
STATSGO, the WRFG simulation yields reduced latent heat
flux values and increased sensible heat flux following the sur-
face energy balance.

b. NLDAS2 forcing

It is also relevant to examine the spatial structure of the
surface variables in the model simulations. To this end, we
employ the North American Land Data Assimilation System
version 2 (NLDAS2) forcing (Cosgrove et al. 2003) as a proxy
for observations. We selected 2-m temperature, 2-m specific
humidity, and precipitation to compare against the WRF
Model products from this dataset. Due to differences in grid
spacing, the WRF Model data were bilinearly interpolated to
the NLDAS2 grid (∼12-km grid spacing).

The NLDAS2 nonprecipitation forcing data are derived
from the North American Regional Reanalysis (NARR;
Mesinger et al. 2006) analysis fields but are spatially interpo-
lated to the finer 1/88 NLDAS2 grid. Additionally, the forcing
data are temporally disaggregated from the 3-hourly NARR
data to the NLDAS hourly time step. The NLDAS precipita-
tion data are a temporal disaggregation of a CPC gauge-based
daily precipitation (Xie et al. 2007), combined with Doppler
radar data, CMORPH data, and 3-hourly NARR data in a
way that reflects the strengths of each dataset on the NLDAS
grid (Cosgrove et al. 2003).

Figure 3a presents mean (JJA 2016–18) precipitation from
the NLDAS forcing dataset. The western United States is
mostly dry during this period, with most areas experiencing
1 mm day21 or less. While the monsoon precipitation in
northwestern Mexico is strongest in JAS, its signal is already
detected in JJA. In the central United States, the characteris-
tic gradient of increasing precipitation from the front range of

Colorado eastward into the Midwest is present, along with
slightly elevated precipitation values along the eastern and
southern U.S. coastal regions.

Most models tend to have more difficulties in reproducing
summer precipitation due to their dependence on imperfect
parameterizations. Models often overproduce precipitation in
regions near topography. In addition, the propagation speed
of convective systems is reduced, resulting in increased
daily precipitation values, especially in mountainous regions
(Tripathi and Dominguez 2013; Yun et al. 2020; Navale et al.
2020). This is also the case of the WRF Model. The differ-
ences (WRFS 2 NLDAS) in mean (JJA 2016–18) precipita-
tion are shown in Fig. 3b. The overall model precipitation
pattern is like that in observations (not shown), but regional
biases are noticed. The western mountain region exhibits posi-
tive precipitation anomalies, while the opposite is true in most of
the United States east of the Continental Divide. Negative biases
are also observed along the eastern and southern U.S. coasts,
reaching precipitation of about22 mm day21.

Figure 3c depicts the (JJA 2016–18) mean 2-m temperature
from the NLDAS2 forcing dataset. The climatological fea-
tures show high temperatures in the south-central United
States and in the southwestern U.S. desert regions, with
cooler values in the Rocky Mountains and the Pacific North-
west. Comparing WRFS to NLDAS2 forcing (Fig. 3d), the
WRFS simulation has a warm bias (from 11 to 12 K) in the
eastern and central United States and a cool bias (from 22 to
23 K) in the Rocky Mountains. Because the resolutions of
NLDAS2 and the WRF simulations are similar, we expect dif-
ferences due to grid interpolation to be negligible in extreme
topography areas (i.e., the Rocky Mountains), yet some dif-
ferences may arise.

In Fig. 3e, the mean 2-m specific humidity is shown from
the NLDAS2 forcing. The climatology shows a northwest-to-
southeast gradient of increasing specific humidity across the
CONUS region, with maximum values along the Gulf Coast
and southern Atlantic Coast states. Compared to the NLDAS2
forcing, the WRFS simulation reveals a widespread dry bias
(from 21 to 22 g kg21) that occupies most of the eastern
part of the United States, with smaller positive biases (from
0 to11 g kg21) existing in the western states.

The midwestern U.S. environment in the WRFS simulation
is both slightly warmer and slightly drier than the NLDAS2
forcing data. Still, compared to other model simulations, it is
within a reasonable range. The WRFG simulation displays an
environment more like WRFS than it is to NLDAS, but with
even warmer and drier conditions in the Midwest. These vari-
ables are compared between simulations in DB21 (see their
Fig. 8). This study aims not to rank the simulations in terms of
accuracy but instead to investigate the implications of their
soil-induced differences.

c. Model variability

In an ensemble strategy, multiple instances of similar physi-
cal responses given different initial conditions are more
robust than single simulations, increasing the likelihood that
the system’s responses are due to imposed conditions rather
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than an unknown factor. Even though our set of simulations
is small, there are no prominent outlying ensemble members
lending confidence that the systems are responding similarly
to the imposed conditions despite different initial conditions.
Given the dependence of ensemble-mean values on the indi-
vidual members and to ensure that collectively they represent
an adequate ensemble distribution, we evaluate the simula-
tions for key variables at intraseasonal and interannual scales.

Considering the intraseasonal variability, Fig. 4 shows esti-
mated probability distribution functions of daily mean values
for both domain-averaged precipitation and domain-averaged
latent heat flux. Concerning precipitation, each month reports
similar distributions of daily values. July has the narrowest
distribution (Fig. 4a), indicating the most similarity day to
day, with mean values near 3 mm day21. June experiences the
widest distribution with daily values approaching 6 mm day21

on the upper tail of the distribution and a cluster of nonpreci-
pitating days. While the daily mean values in August are most
like the entire simulation mean distribution (black line).

The daily latent heat flux (Fig. 4b) displays a different intra-
seasonal behavior compared to the corresponding for daily
precipitation. Domain-averaged daily latent heat values
decrease as the season progresses: the highest likelihood of
high values is found in June, midrange values in July, and the
likelihood of lower latent heat flux values is found in August.
The complete simulation-average daily values (black line)

have a reduced peak but are much broader to encompass the
month-to-month variability.

Contrasting interannual variability instead (Figs. 4c,d), pre-
cipitation and latent heat flux show similar and related pat-
terns. First, for precipitation, Fig. 4c shows that 2017 is
skewed toward the lower end of daily mean precipitation val-
ues, while 2018 is skewed slightly toward the upper end of the
distribution. The daily values or precipitation from 2016 rep-
resent the best estimate of the ensemble mean. The distribu-
tion of interannual daily latent heat flux (Fig. 4d) echoes the
same pattern as the distribution of interannual daily precipita-
tion with less latent heat flux occurring each day in 2017, while
2018 experiences slightly higher than normal latent heat flux
each day. The distributions of daily mean precipitation and
latent heat flux can be interpreted in two ways: 1) if more pre-
cipitation occurs, there could be more moisture available to
transmit from the land surface to the atmosphere, increasing
latent heat flux, or 2) if more latent heat flux occurs, there
could be more conducive conditions for precipitation to occur
leading to increased precipitation.

4. Changes in the environment

a. Thermodynamic drivers

Atmospheric instability is the primary thermodynamic forc-
ing of summer precipitation. Areas with more CAPE and

FIG. 3. Meteorological fields from the NLDAS Forcing (a) precipitation (mm day21), (c) 2-m temperature (K), and
(e) 2-m specific humidity (g kg21). Differences (WRFS 2 NLDAS forcing) bilinearly interpolated to the NLDAS grid:
(b) precipitation (mm day21), (d) 2-m temperature (K), and (f) 2-m specific humidity (g kg21).
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smaller CIN are more conducive environments for initiating
and sustaining precipitating systems. CAPE and CIN are
highly dependent on low-level temperature and moisture and
on the evolution of the PBL; therefore, because soil proper-
ties affect the surface water and energy fluxes, they influence
atmospheric stability also.

The spatial patterns of latent and sensible heat fluxes are
shown in Fig. 5. The WRFS simulation mean latent heat flux
(Fig. 5a) exhibits lower western United States values, with
higher values in the eastern United States. In the Midwest,
values approach 150 W m22 (Fig. 5a). The differences
between the two simulations (WRFG 2 WRFS; Fig. 5b) are
consistent with the reduction in soil grain size}smaller grains
in GSDE lead to reduced latent heat flux, as illustrated in the
Midwest by the negative differences of about 215 W m22, or
about 10% of the climatological value. This is like what is
shown in DB21 (see their Figs. 8a,b). The differences across
much of the domain are significant at the 95% confidence
interval (p 5 0.05) denoted by the stippled area in Figs. 5b
and 5d. Note that these differences in surface fluxes represent
full period mean values, including nighttime values suggesting
that for a daytime-only calculation the differences are pro-
bably much larger (perhaps even 2 times). These differences

in surface fluxes lead to differences in 2-m specific humidity of
about22 g kg21 in the same region (DB21, see their Fig. 8c).

When incoming energy can no longer remove moisture
from the soil, it is partitioned between sensible heat flux, out-
going longwave radiation, and ground heat flux. Therefore,
mean sensible heat flux displays a similar (but opposite) pat-
tern in the WRFS simulation (Fig. 5c): larger values in the
western United States and lower values in the eastern United
States. Differences between the two simulations (Fig. 5d)
reveal an increase in sensible heat flux collocated with the
soil-texture-related negative differences in latent heat flux in
the Midwest region, approaching about 15 W m22 or about
15%–20% of the climatological value in that region. These
differences in sensible heat flux are collocated with positive
differences in 2-m temperature of about 12 K (DB21, see
their Fig. 8d).

As soon as differences arise in low-level thermodynamic
variables such as 2-m temperature and 2-m specific humidity,
instability quantities will also be affected (i.e., CAPE and
CIN). The summer average CAPE (JJA, 2016–18) computed
from the daily WRFS output (Fig. 6a) exhibits a gradient from
northwest to southeast with minimal values west of the Rocky
Mountains and maximum quantities along the eastern and

a) b)

c) d)
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FIG. 4. The interannual and intraseasonal variability is displayed in terms of the distributed probability of occurrence
of domain-averaged daily (a),(c) precipitation and (b),(d) latent heat flux. Intraseasonal variability is shown as histo-
grams and approximated distributions of daily mean values in June (blue), July (orange), and August (green), with the
black line representing the full simulation mean. Interannual variability is shown as distribution of the probability of
daily mean values in 2016 (blue), 2017 (orange), and 2018 (green), again with the black lines representing the full simu-
lation mean.
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southern coasts. The primary feature in the CAPE differences
map (WRFG 2 WRFS; Fig. 6b) is an area of reduced
mean daily CAPE in the upper Midwest of 150–200 J kg21

(i.e., 15%–20% of the climatological value in that region).
These differences in mean CAPE are statistically significant
(p 5 0.05) in the area collocated with the main differences in
surface fluxes (see stipples in Fig. 6b). The smaller soil grains
in WRFG lead to reduced 2-m temperature and increased 2-m
temperature as discussed in DB21. These warmer and drier
conditions related to the finer soil grains lead to a reduction
in CAPE and, therefore, less conducive conditions for convec-
tion initiation and maintenance.

The JJA 2016–18 mean pattern in CIN is slightly different
from the CAPE pattern in the WRFS simulation for this
period (Fig. 6c). The eastern United States shows more
elevated values than the western United States, similar to
CAPE; however, CIN’s maximum values occur in the Great
Plains (about 200 J kg21). The differences (WRFG 2 WRFS;
Fig. 6d) in CIN display a considerable reduction of CIN in
an area similar to and just west of CAPE’s negative differ-
ences. This area of differences in Fig. 6d is mostly statisti-
cally significant at a 95% confidence interval (p 5 0.05).
CIN’s value can be based on either temperature or moisture
depending on the ratio of the environmental stratification
to the moist potential temperature lapse rate (Crook 1996).

That is, it depends on the lapse rate between the LCL and
the LFC. The warmer and drier surface environment in the
WRFG simulation would increase the LCL height and
reduce the distance between it and the LFC, in some cases,
reducing CIN.

The differences in CAPE and CIN can be traced directly to
the impact of reducing the soil grain size in the WRFG simula-
tion. Taken together, the differences indicate that the WRFG
environment has less energy available to sustain convection
(CAPE: from 2150 to 200 J kg21), yet, in the Midwest, that
energy is more easily accessible (CIN: 250 J kg21), resulting
in a competing effect for precipitation processes. The differ-
ences in CIN and, especially in CAPE, are related to the dif-
ferences in surface fluxes; therefore, they can also be related
to soil hydrophysical properties via soil texture.

b. Moisture transports

The implications of changing the soil’s hydrophysical prop-
erties extend beyond creating conducive or inhibited convec-
tive environments. By changing the structure and evolution
of the PBL through adjusting the distribution of soil properties,
low-level circulation and moisture transports are also affected.
To evaluate these processes, integrated quantities are presented
in Fig. 7: precipitable water and moisture transports. Mean

FIG. 5. Three-year JJA-averaged surface (a) latent heat flux (W m22) and (c) sensible heat flux (W m22) maps are
shown for the WRFS simulation as well as the differences (WRFG 2 WRFS) in (b) latent heat flux and (d) sensible
heat flux. The stippled areas in (b) and (d) denote statistically significant differences in daily values at the 95% confidence
interval (p5 0.05).
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values in the figure are consistent with previous analysis (e.g.,
Roads et al. 1994).

Precipitable water in the WRFS simulation increases from
the western deserts to the southeastern coastal regions
(Fig. 7a), with the highest values occurring along the Gulf
of Mexico coast in Florida and in the Yucatan Peninsula.
The precipitable water differences (WRFG–WRFS; Fig. 7b)
describe a similar pattern to the differences in latent heat flux
(Fig. 5b) with negative values occurring throughout the Mid-
west, again consistent with the area of smaller soil grain sizes.
The finer soil grains in this region restrict evaporation and
lead to drier conditions above the surface. Additionally, there
are positive differences in precipitable water throughout cen-
tral Mexico and extending northward along the Rocky Moun-
tains toward northeastern Colorado and western Nebraska.

The WRFS moisture transports are shown in Fig. 7c (vectors),
while the WRFG 2 WRFS differences are shown in Fig. 7d with
red vectors indicating statistically significant values (p 5 0.1).
The moisture transport vectors are calculated by multiplying
water vapor (q) by the u and y wind components at each level
and then integrating vertically. The vectors (1 shown every
20 grid points) indicate strong southerly flow from the Gulf of
Mexico into the central United States, a feature consistent with
the Great Plains low-level jet location. At the terminus of the
low-level jet, the vectors veer eastward into the Midwest and
progress to the East Coast, eventually continuing to wrap

southward toward the southern Appalachian Mountains and the
U.S. Southeast.

Figure 7d shows that changes in the soil properties induce
differences in moisture transports (vectors). The WRFG simu-
lations show an increased southerly flow of moisture toward
the Rocky Mountains, an area consistent with the positive dif-
ferences in precipitable water (Fig. 7a). These differences
emanate from central Mexico, a place of increased soil grain
size in the WRFG simulation. The differences in moisture
transports in the Midwest indicate a northward extension of
the Great Plains low-level jet and concurrent veering through-
out Nebraska and extension northeastward toward Wisconsin
and Indiana. These differences are statistically significant at
the 90% level (p 5 0.1) denoted by the red vectors in Fig. 7d.
The vectors along the eastern coastal region show enhanced
northerly transport of moisture. Along southern coastal
United States, it shows enhanced easterly transport of mois-
ture culminating in a net cyclonic circulation of moisture
transports in the eastern United States encircling the area of
finer soil grains in the WRFG simulation.

In general, the larger sensible heat flux in the WRFG simu-
lations (Fig. 5d) instigates enhanced turbulent kinetic energy
in the boundary layer leading to higher planetary boundary
layer heights. The interaction of this PBL structure with the
low-level winds can lead to either enhanced or diminished
horizontal flows at a given height, as seen here. This agrees

FIG. 6. Three-year JJA-averaged (a) CAPE (J kg21) and (c) CIN (J kg21) maps are shown for the WRFS simulation
as well as the differences (WRFG 2 WRFS) in (b) CAPE and (d) CIN. Stippled areas in (b) and (d) represent statisti-
cally significant differences at p5 0.05.
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with previous findings where warm anomalies can lead
to enhanced meridional moisture transports (Yang and
Dominguez 2019). Furthermore, moisture transports are
predominantly low-level phenomena because most atmo-
spheric moisture is in the lower troposphere. In some cases,
the height of the strongest winds in the boundary layer is
altered, resulting in an alignment of strong winds and high
moisture content, therefore, enhancing moisture transports
(such as in Iowa and Illinois in WRFG). In other cases, the
height of the strongest winds is separated from the concen-
trated moisture, leading to reduced moisture transports
(such as along the Gulf Coast in WRFG). In both cases, the
corridors of intense winds and the areas of enhanced mois-
ture in the PBL are directly influenced by surface moisture
and energy fluxes, which have been altered by changing the
soil texture assignments.

c. Atmospheric water budget

The primary components of the atmospheric moisture bud-
get are precipitation (P), evapotranspiration (ET), and the
vertically integrated moisture flux convergence (MFC) can be
related as

MFC 5 ET 2 P 1 R, (1)

where R is a residual term. MFC in Eq. (1) is given by

MFC 5 = · 1
g

�Psfc

Ptop

qV( ) dp, (2)

where q is water vapor, V is the vector wind field, and g is
gravity; the integral is computed on pressure coordinates.
Commonly, the change in water content in an atmospheric
column over time is also included (W=t) in the atmospheric
water budget, but this term is much smaller than the other
three, so it is left out of this first-order analysis.

This simple budget equation states that the moisture enter-
ing a given volume of air (by moisture flux convergence and
evapotranspiration) is equal to the water exiting that volume
(by precipitation). It is a relationship that has been fundamen-
tal to water budget studies for decades (Rasmusson 1968;
Roads et al. 1994; Berbery et al. 1996; Berbery and Rasmusson
1999; Li et al. 2013; Trenberth et al. 2007). The individual
terms of Eq. (1) are shown in Fig. 8, and the values over the
Midwest region are expressed in Table 2.

Figure 8a shows the (JJA 2016–18) mean precipitation
from the WRFS simulation. The largest precipitation is found
over southern Mexico and Central America, followed by large
values in areas of topography (the Rocky Mountains and
throughout the Appalachian Region), and there is generally
increasing precipitation from the Rocky Mountains eastward
to the Atlantic and Gulf Coasts like the NLDAS forcing
(Fig. 4a) but with smaller values. The differences due to soil

FIG. 7. (a),(c) Three-year JJA-averaged quantities are shown for the WRFS simulation and (b),(d) the differences
(WRFG 2 WRFS) in those quantities. (top) Precipitable water (kg m22) and (bottom) vertically integrated moisture
flux vectors every 20 grid spaces (kg m s21; see keys for standard vector sizes). Stippled areas in (b) and red vectors in
(d) show 90% confidence intervals (p5 0.1).
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texture changes in the simulations (WRFG 2 WRFS; Fig. 8b)
depict positive P values throughout the Rocky Mountains.
These differences in precipitation in both the western United
States and many of the negative differences in the eastern
United States are statistically significant at p5 0.1. The differ-
ences in precipitation are collocated with statistically signifi-
cant differences in runoff of the same signs (not shown). The
runoff then acts to redistribute moisture at the surface, which
in turn can affect surface fluxes and streamflow.

Three-year JJA-averaged ET from the WRFS simulation is
represented in Fig. 8c, with the ET differences (WRFG 2

WRFS) are presented in Fig. 8d. The highest values of ET in
WRFS are located along the Appalachian Mountains, with

maximum values nearing 4.5 mm day21. The largest continuous
area of negative differences is collocated with the area of
decreasing soil grain size in the Midwestern United States
(Fig. 1c). The largest continuous area of negative ET differences
(Fig. 8d) is also collocated with the largest negative differences
in P (Fig. 8b). Differences in ET are strongly linked to the
changes in soil texture categories supported by the widespread
areas of statistical significance (Fig. 8d). Enhanced ET modifies
the thermodynamic instability (i.e., CAPE/CIN; Fig. 6) to create
an environment more or less conducive for precipitation.

In WRFG, the ET is reduced due to the soil’s hydrophysical
properties creating drier conditions above the surface (Fig. 8c).
This leads to negative differences in CAPE (Fig. 6b) in the same

FIG. 8. The main components of the 3-yr JJA-averaged atmospheric water budget are displayed for theWRFS simulation:
(a) P, (c) ET, and (e) MFC; while the differences (WRFG 2 WRFS) in simulation-averaged quantities are shown: (b) P,
(d) ET, and (f) MFC. All units are mm day21. Stippled areas (b), (d), and (f) show 90% confidence intervals (p5 0.1).
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region. The differences in ET (about 1 mm day21) represent
about 20% of the simulation-average value of ET. The differences
in precipitation in this area (about 0.75–1.0 mm day21) conse-
quently also represent about 20% of the 3-yr JJA-averaged value.

Moisture flux convergence for WRFS is shown in Fig. 8e,
and differences between the model simulations are shown in
Fig. 8f. MFC has been smoothed using a two-dimensional
Gaussian smoother based on the standard deviation of the
raw field. Its differences tend to agree with the differences in
P: in central Mexico, positive differences in MFC are collo-
cated with positive P differences. Similarly, there are modest
positive and statistically significant differences in MFC
throughout the Rocky Mountains in an area where there are
also positive differences in P. However, in the eastern United
States, particularly in the Midwest, the precipitation differ-
ences (WRFG 2 WRFS) are primarily negative despite (not
significant) positive differences in MFC. MFC can be influ-
enced by both dynamic (V) and thermodynamic (q) factors.
Following the methodology of Chen et al. (2019), we sepa-
rated the thermodynamic component from the dynamic com-
ponent of the vertically integrated vertical advection of
moisture and found that indeed it was mostly dynamic in
nature (not shown), despite some minor thermodynamic
signatures. While in principle this result seems counterintui-
tive, it is because other elements come into play.

MFC is one of the factors determining precipitation,
but not the only one. To better understand the processes
involved, we examine the thermodynamic factors. The nega-
tive differences in P are in (and just east of) the statistically
significant region of reduced mean CAPE (Fig. 6b). In the
Midwest, there appears to be a higher correspondence
between the differences in CAPE (Fig. 6b) and precipitation
(Fig. 8a), than there is between MFC (Fig. 8f) and precipita-
tion suggesting that precipitation in this region may be more
sensitive to thermodynamic instability than it is to moisture
flux convergence. Nonetheless, this study shows that through
the changes in soil hydrophysical properties, the boundary
layer is altered, affecting the low-level winds and the general
circulation as it applies to the atmospheric water budget.

5. Conclusions

This study explored the effects of soil hydrophysical prop-
erties on surface fluxes and subsequently on atmospheric

stability and the atmospheric water budget. To this end, 3-yr
JJA regional WRF simulations employing different external
soil texture databases were conducted. First, the well-known
soil databases, STATSGO and GSDE, are used to assign soil
texture categories to model grid spaces. Those assignments
are used with an accompanying lookup table to insert the
appropriate soil hydrophysical property when necessary.
Look-up tables are convenient from a computing efficiency
standpoint. Still, they assume that soil properties associated
with a soil texture category in one location are the same as
that category’s properties everywhere, which is not always the
case. By changing the external soil database, the spatial pat-
terns of the soil’s hydrophysical properties are changed.
Therefore, they affect the interactions between surface and
subsurface moisture and the atmosphere.

The STATSGO dataset is contrasted against the GSDE
dataset using RCMs to infer the impact of soil texture on land
atmosphere interactions and the atmospheric moisture bud-
get. These two datasets represent premier estimates of soil
texture, and each is widely used. However, as is evident in
Fig. 1, they exhibit substantial differences. Most notably, the
GSDE dataset represents a reduction in soil grain size
throughout the Midwest.

It has been shown that reducing the soil grain size leads to
a reduction in latent heat flux and an increase in sensible heat
flux for a given value of soil moisture (DB21). The changes in
fluxes via soil texture altered low-level humidity and tempera-
ture leading to differences in 3-yr JJA-averaged thermody-
namic instability characteristics. In the Midwest, the WRFG
environment experienced a statistically significant drop in
mean CAPE. Reduction in CAPE signifies a reduction in
energy available to sustain convection. However, that area
and areas just west of the Midwest also experienced a statisti-
cally significant reduction in CIN. The net effect of reducing
both CIN and CAPE is an environment with less energy to
sustain convection (smaller CAPE); yet, that energy is more
easily accessed (smaller CIN), resulting in a competing effect
for precipitation processes. The location of the precipitation
differences suggests a closer relationship to the differences in
CAPE than to the differences in CIN.

Changes in surface fluxes due to the soil’s hydrophysical
properties also have dynamical implications, affecting atmo-
spheric moisture transports and vertically integrated moisture
flux convergence. Differences in sensible heat flux lead to
changes in turbulent kinetic energy and PBL growth. In this
case, those interactions led to enhanced horizontal flows, such
that a main general circulation feature, the Great Plains low-
level jet, was elongated, and in the exit region, the WRFG
simulation indicated stronger veering into the upper Midwest.
Similarly, along the southern coastal states and just inland,
there was a net easterly return flow, connecting a net cyclonic
rotation of moisture transports encircling the area of reduced
soil grain size in the WRFG simulation.

Furthermore, it has been shown that changing the soil
hydrophysical properties can affect each term in the atmo-
spheric water budget: P, ET, and MFC. The largest differ-
ences were shown in seasonal mean ET, a direct relationship
in which smaller soil grains lead to reduced ET via the

TABLE 2. The main components of the atmospheric water
budget are shown from the Midwest: precipitation (P), moisture
flux convergence (MFC), evapotranspiration (ET), and the
residual (RES). Single-month averages are included as well as
the full-period means. All units are mm day21.

WRFS WRFG

3-yr mean P MFC ET Res P MFC ET Res

June 2.95 0.55 4.72 1.22 2.83 0.67 4.56 1.06
July 2.55 0.92 4.12 0.64 1.98 1.11 3.64 0.55
August 1.81 1.17 2.87 20.11 1.57 1.84 2.52 20.89
Total 2.44 0.88 3.90 0.58 2.13 1.21 3.57 0.24
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mechanisms described in DB21. Lesser but still apparent dif-
ferences were found in MFC that are related to two mecha-
nisms: 1) soil-related differences in low-level atmospheric
moisture and 2) differences in low-level horizontal winds
related to soil-modulated surface heat fluxes. Using the
approach from Chen et al. (2019), it is demonstrated that the
differences in MFC are primarily dynamic in nature (not
shown).

Furthermore, the changes in continental precipitation depend
on the type of precipitation regime: ones that resemble and
appear to be dependent on MFC (i.e., arid regions throughout
Mexico and the Rocky Mountains), and ones that are more
dependent on the thermodynamic instability (i.e., the Midwest).
The arid mountain west is strongly dependent on atmospheric
transport of moisture before precipitation, otherwise there is not
sufficient moisture available. On the hand, in the Midwest, there
is usually sufficient moisture available for precipitation to occur,
but it may be inhibited by thermodynamic instability. In both
scenarios, atmospheric transport of moisture occurs, but it is
more critical in the mountain west. In either case, both regimes
can be affected by soil properties through the various mecha-
nism. Finally, the results of this study suggest that uncertainties
in the definition of soil hydrophysical properties can lead to dif-
ferences of the order of 15%–20% of the mean values in the
atmospheric water budget in summer.
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